Graphene Composite Fin (GCF™)Technology – Advanced Energy Storage Thermal Management

General Information

September 6, 2016 - P v6.0

James Piñón President jpinon@hybriddesignservices.com Hybrid Design Services, Inc. 2479 Elliott Drive Troy, MI 48083 248-298-3400

HDS Graphene Composite Fin (GCF™)Tech Summary

- Patent-pending Technology
- Outperforms thermal performance of passive Al or Cu plates
- Offers thermal performance similar to complex liquid cooling systems
- Reduced Size, Weight, and Power Consumption (SWaP)
- Is lightweight and non-corrosive
- Is easy to manufacture and assemble

Graphene and Nano Carbon Materials

Graphene Nanoplatelets

HDS designs use a domestically-sourced, low-cost graphene nanoplatelet material, manufactured via a non-oxidizing process to produce an exceptionally pure material whose size, shape & edge chemistry can be controlled to customize properties.

The graphene nanoplatelet materials are laminated, bonded, or mixed with other base materials to provide the required thermal and structural performance.

Graphene Composite Fin (GCF[™]) - Competitive Positioning - I

GCF[™] vs graphite foil:

- Better electrical or thermal properties
- Tailored compositions consisting of graphene nanoplatelets
- Can include selected additives or coatings designed for specific properties
- Better two-dimensional anisotropic properties

GCF[™] vs metal foil:

- Lighter
- Does not corrode
- Better thermal properties
- Much better two-dimensional anisotropic properties
- Tailored wettability and chemical resistance

Product	Description	In-plane Thermal Conductivity (W/m•K)
Graphene used in GCF [™]	Anisotropic – controlled heat transfer in 2D Tailored wettability and chemical resistance	> 500
GCF™	Anisotropic – controlled heat transfer in 3D Tailored thickness, strength, physical, thermal, and electrical properties	300-475
Natural Graphite	Limited thermal conductivity	150 – 400
Copper	Lower thermal conductivity, heavy	< 400
Aluminum	Much lower thermal conductivity, corrosive	< 240

HDS GCF[™] – Competitive Positioning - II

Thickness vs. **Performance**

In-Plane Thermal Conductivity, W/m·K

Price vs. **Performance**

GCF[™] – Tailoring Properties for Unique Applications

- Strength & Formability
- Conductivity at elevated temperature
- Low/High Pressure Operation
- Low/High Temperature Operation
- Coatings
 - Adhesive
 - Abrasion
 - Electrically insulating
 - Thermal conducting
- Lamination
- Minimum bend radii, Bend cycling
- Surface properties (hydrophobicity, etc.)
- Processing Capability

GCF[™] Energy Storage Example

Energy Storage Thermal Management Overview (transportation)

HDS Graphene Composite Fin* (GCF™)

Graphene Composite Fin* Advantages

- Reduced parasitic energy consumption
- Fewer Fluid leak points
- Lower Complexity & parts count
- **Lower System Cost**

FROM:

Module

TO:

Current industry designs utilize circulating liquid which passes through a series of internal heat exchangers in the battery modules. Each 'fin' requires multiple seals/gaskets.

* Patent-pending

GCF[™] – Gen II Simulation Results

Gen II GCF Comparison to Flow through Fin

Comparable cooling performance (less than 3 deg. C rise) while improving:

- Manufacturing part count
 Complexity
 Leak paths (>500 O-rings → ~12),
 - Pressure drop/ pumping losses on the 12Vdc system

Cell Temp Rise ~ 2.6°C (spot) / 2.3°C (area)

✓ 10L/min

✓ 30° C Inlet Temp

Cell Temp Rise ~ 2.0°C

* Source: Variable Fidelity Methodology For Thermal Battery Modeling H.Lewis, B.Zandi, G.Lewis, & S.Ketkar

GCF[™] – Gen II Test Results

Gen II and Gen III GCF testing Underway Gen II GCF Testing shows very good correlation with simulation results.

Test Results = 476 W/m-K

HDS GCF[™] – Gen III Designs: Pouch, Prismatic, & Cylindrical Cells

Source: Siemens, NASA, FIA Formula E, FedEx, Airbus

HDS GCF[™] Summary

HDS Graphene Composite Fin Technology

- Outperforms thermal performance of passive Al or Cu plates
- Offers thermal performance similar to complex liquid cooling systems
- Reduced Size, Weight, and Power Consumption (SWaP)
- Provides superior heat spreading/distribution performance
- Is lightweight and non-corrosive
- Offers adjustable thicknesses and structural performance
- Offers reduced coolant pumping power, leak paths, and parts count
- Offers new design flexibility for thermal management system optimization
- Is easy to manufacture and assemble

About HDS

HDS Corporate Introduction

Hybrid Design Services, Inc. (HDS™) offers a full range of consulting, engineering, design, prototyping, and testing services, focusing on the advanced transportation and energy technology sectors.

Company Name: Hybrid Design Services, Inc. ISO 9001:2008 Certification: 8/19/2014

Year Founded: 2004

Headquarters: 2479 Elliott Ave., Troy, MI 48083

Phone: + 1.248.298.3400 Fax: + 1.248.298.3402

Web: www.HybridDesignServices.com

DUNS: 802293774

HDS Design, Engineering, Prototyping, & Testing Services

- Complete Vehicle xEV Drive Design, Development, Vehicle Integration, and Testing
 - Heavy-duty, Off-road, Marine, & Military Systems
 - Renewable Energy & Stationary Systems

Passenger & Cargo Vehicle Drive Systems

Heavy-duty Systems

Renewable Energy & Stationary Systems

Testing and Simulation Services

HDS Energy Storage Design & Engineering Expertise

Development, Design, and Prototyping

Pack Design and Optimization

- Module Size and configuration optimization
- · Pack Electrical, Mechanical and Thermal Interface
- Vehicle Packaging & Environmental Protection
- BMS Development and Integration

Module Design and Optimization

- Cell Selection
- Module Packaging
- Cell carrier and Interconnect strategy
- Module V/T sense
- Thermal System Integration

Prototype Development

- Module Builds
- Pack Builds
- · Incoming and End-of-line testing
- Supplier Management

Thermal and Structural Analyses

- Cell Thermal Model Correlation
- Module model development and correlation
- Module and Pack Thermal strategy development
- Module and Pack Structural System Design

HDS Products & IP

'Smart' Power Distribution Systems

Graphene Composite Fins

OTS Battery Management Systems

Thank you!

Please contact HDS to learn more!

James Piñón President JPinon@hybriddesignservices.com (313) 673-6917 Hybrid Design Services, Inc. 2479 Elliott Dr. Troy, MI 48083 – USA (248) 298-3400

www.HybridDesignServices.com

